SR NO-2764/2022

Name of the Course : B. A. (Prog.) Unique Paper Code : 62357603

Name of the Paper Numerical Methods

Semester Duration : 3 Hours Maximum Marks : 75 Marks

Duration: 3 hours

(Write your roll no. on the top immediately on receipt of this question paper.)

All six questions are compulsory. Attempt any two parts from each question.

Use of Non - Programmable Scientific Calculator is allowed.

Q-1. (a) Find the root of the equation $f(x) = \cos x - xe^x$ lying between (0,1) by the Bisection method.

[6]

(b) Obtain the rate of Convergence of Regula - Falsi method.

[6]

(c) Suppose 1.414 is used as an approximation to $\sqrt{2}$, then find the absolute and relative error. [6]

(d) Find a real root of the equation given by $x^2 - 7x + 1 = 0$ by Newton – Raphson

[6] Q-2. (a) Solve the given equation $f(x) = x^3 + x^2 + x + 6$ by Secant method. [6.5]

(b) Perform two iterations of Newton's method to solve the non - linear system of equation with initial approximation (1,1):-

$$f(x,y) = x^2 + y^2 - 4 = 0,$$

$$g(x,y) = x^2 + y^2 - 16 = 0$$
[6.5]

(c) Round off the number 784320 to four significant digits and compute Ea (Absolute error), Er (Relative error) and Ep (Percentage error) for this number.

[6.5]

[6]

(d) Find the real root of the equation $f(x) = x^3 - 9x + 2 = 0$ by Regula – Falsi method in the interval 2 and 3. [6.5]

Q-3. (a) Starting with initial vector (x, y, z) = (0, 0, 0), perform three iterations of Gauss-Seidel method to solve the following system of equation:

$$2x - y = 7$$

$$-x + 2y - z = 1$$

$$-y + 2z = 1.$$
[6]

(b) Construct the interpolating polynomial using the Gregory-Newton backward difference interpolation for the given data set:

W-4-		8		راما		
x	0.1	0.2	0.3	0.4	0.5	
f(x)	1.4	1.5	1.7	2.0	2.2	

Hence estimate the value of f(x) at x = 0.35.

(c) Using Gauss-Jordan method, find the inverse of the matrix

$$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$$
. Deshbandhu.College Library [6] Kalkali, New Deli

(d) Consider the following table:

[6]

x	1	2	490	5
f(x)	5.3	2.0	3.1	1.0

Use dividend difference to calculate the interpolating polynomial of degree 3 and give an estimate for f(1.5).

Q-4. (a) Find the Lagrange interpolation polynomial for the data set:

(0,1), (1,3) and (3,5,5). Also estimate the value at x = 1.5.

PAPERS at StudentSuvidha.com

(b) Using Gaussian Elimination method, solve the following system of equations:

$$4x - 3y + z = -8$$

$$-2x + y - 3z = -4$$

$$x - y + 2z = 3.$$
 [6.5]

(c) For the following system of equations:

$$4x + y + z = 2$$

 $x + 5y + 2z = -6$
 $x + 2y + 3z = -4$.

Use Gauss-Jacobi iteration method by performing three iterations. Take the initial approximation as (x, y, z) = (1,1,1). [6.5]

(d) Prove the following relation:

$$\Delta + \nabla = \frac{\Delta}{\nabla} - \frac{\nabla}{\Delta}.$$
 [6.5]

[6]

Also construct the forward difference table at the following data points:

x	0	1	2	3	4
f(x)	1	7	23	55	109

Q-5. (a) The velocities of a car running on a straight road at intervals of 2 minutes are given below:

Time(min)	0	2	4	6	8	10	12
Velocity(km/hr)	0	22	30	27	18	7	0

Using Simpson $\frac{1}{3}$ rd rule find the distance covered by the car.

(b) Given that $\frac{dy}{dx} - \sqrt{xy} = 2$ with y(1) = 1, find y(2) by Euler's method (Take h = 0.5).

(c) Using Midpoint method obtain the numerical solution y(0.2) of the initial value problem $y' = (x - y)^2$; y(0) = 0.5 correct to 4 decimal places, with h = 0.1. [6]

(d) Calculate the value of $\frac{d^2y}{dx^2}$ for x = 10; given the following table:-

4	dx	dx^2	, 8		
	X	3	5	11	27
904	f	-13	23	89	170

Q-6. (a) Evaluate $\int_0^1 \frac{1+x}{1+x^3} dx$ using Trapezoidal rule by dividing interval into five equal parts. [6.5]

(b) Given that the differential equation $\frac{dy}{dx} = x^2 + y$, y(0) = 1. Find the value of y(0.02), using Euler's modified method. [6.5]

(c) Find $f'(x_2)$ using central difference formula and Richardson extrapolation with h = 2, $(x_0, y_0) = (1, 2)$, $(x_1, y_1) = (2, 4)$, $(x_2, y_2) = (3, 8)$, $(x_3, y_3) = (4, 16)$, $(x_4, y_4) = (5, 32)$. [6.5]

(d) Find the value of the integral $I = \int_0^4 \frac{dx}{1+x^2}$ using the Simpson 3/8th rule with h = 1. [6.5]

Deshbandhu, College ! ihram Kalkaji, New Delhi-19